0

Full Content is available to subscribers

Subscribe/Learn More  >

Infuence of the Friction Force, the Tooth Correction Coefficient and the Normal Force Radial Component in the Form Factor and the Stress in the Feet of Spur Gear’s Teeth

[+] Author Affiliations
Aisman Quinones, Rafael Goytisolo, Roger Ocampo

University of Cienfuegos

Jorge Moya

University of Las Villas

Paper No. IMECE2005-80421, pp. 763-774; 12 pages
doi:10.1115/IMECE2005-80421
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Design Engineering, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Design Engineering Division
  • ISBN: 0-7918-4215-0 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

In this paper, a theoretical research is made on the influence of the friction force, the correction coefficient of the tooth and the radial component of the normal force in the Form Factor applicable to the stress on spur gears’ teeth. The Industrial Standards AGMA, ISO and DIN use the Lewis factor as the Form Factor but it doesn’t consider the above mentioned effects. The Standard GOST uses a Form Factor that considers the effect of the correction coefficient of the tooth and the radial component of the normal strength, but it doesn’t include the effect of the friction force. In this paper, a Mathematical Model is developed that incorporates all those effects. The obtained values of the form factors were represented graphically in function of the number of teeth, the correction coefficient and the friction coefficient. A graph is drawn for the driver gear and the driven gear, in which a remarkable influence of the simultaneous action of friction and correction coefficients is appreciated. In this new approach, it is found that the correction coefficients needed to optimize the resistance to the stress fracture of the teeth, in dependence of the values of the friction coefficient, should be greater that those used in the traditional approach. On the other hand, it has always been considered that gears with small number of teeth are the weakest with respect to stress fracture; however, in multiplying transmissions it is possible for driver gears with high number of teeth to be the weakest gear, given the favourable effect of the friction force on Form Factor in the driven gear and unfavourable in the driver gear. For the validation of the obtained results the Program of Finite Elements Analysis COSMOS Design Start 4.0 was used, obtaining very good results. Using FEA and Multiple Lineal Regression, a new expression for the calculation of the stress concentration coefficient in the feet of the tooth, in function of the number of teeth and of the correction coefficient, was found:

kσMEF = 1.497 + 0.126 −0.003933Z

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In