Full Content is available to subscribers

Subscribe/Learn More  >

Improved Structural Joint Concepts

[+] Author Affiliations
Carl May, Henry Wilson, J. Donn Hethcock

Bell Helicopter Textron, Inc.

Tim Davis

Aviation Applied Technology Directorate

Paper No. IMECE2005-81422, pp. 625-636; 12 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Design Engineering, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Design Engineering Division
  • ISBN: 0-7918-4215-0 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


The joining of composite materials used in airframe structures has always presented a challenge to the structural engineer. As part of a Survivable Affordable Repairable Airframe Program (SARAP) agreement, research on three advanced joining concepts was conducted to identify and validate designs that would provide improved structural efficiency when compared to conventional joining methods. The first involves using finger joints in thin laminates to produce a joint with high specific strength compared to typical joining methods. The second utilizes a derivative of needling for stabilized dry fabric pre-forms to improve through-the-thickness laminate and joint properties. The third concept focuses on compression preload to improve the performance of a typical lap joint. Within each concept, coupon or element tests were used to validate the performance of these alternative configurations. This paper presents both analytical predictions and test results documenting the effects of these improved joining methods.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In