0

Full Content is available to subscribers

Subscribe/Learn More  >

Kinematics and Dynamics of Nanostructured Origami™

[+] Author Affiliations
P. Stellman, W. Arora, S. Takahashi, E. D. Demaine, G. Barbastathis

Massachusetts Institute of Technology

Paper No. IMECE2005-81824, pp. 541-548; 8 pages
doi:10.1115/IMECE2005-81824
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Design Engineering, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Design Engineering Division
  • ISBN: 0-7918-4215-0 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

Two-dimensional (2D) nanofabrication processes such as lithography are the primary tools for building functional nanostructures. The third spatial dimension enables completely new devices to be realized, such as photonic crystals with arbitrary defect structures and materials with negative index of refraction [1]. Presently, available methods for three-dimensional (3D) nanopatterning tend to be either cost inefficient or limited to periodic structures. The Nanostructured Origami method fabricates 3D devices by first patterning nanostructures (electronic, optical, mechanical, etc) onto a 2D substrate and subsequently folding segments along predefined creases until the final design is obtained [2]. This approach allows almost arbitrary 3D nanostructured systems to be fabricated using exclusively 2D nanopatterning tools. In this paper, we present two approaches to the kinematic and dynamic modeling of folding origami structures. The first approach deals with the kinematics of unfolding single-vertex origami. This work is based on research conducted in the origami mathematics community, which is making rapid progress in understanding the geometry of origami and folding in general [3]. First, a unit positive “charge” is assigned to the creases of the structure in its folded state. Thus, each configuration of the structure as it unfolds can be assigned a value of electrostatic (Coulomb) energy. Because of repulsion between the positive charges, the structure will unfold if allowed to decrease its energy. If the energy minimization can be carried out all the way to the completely unfolded state, we are simultaneously guaranteed of the absence of collisions for the determined path. The second method deals with dynamic modeling of folding multi-segment (accordion style) origamis. The actuation method for folding the segments uses a thin, stressed metal layer that is deposited as a hinge on a relatively stress free structural layer. Through the use of robotics routines, the hinges are modeled as revolute joints, and the system dynamics are calculated.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In