0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Effect of Fouling on Thermodynamic Performance of Convective Heat Transfer Process Through a Duct

[+] Author Affiliations
Shuangying Wu, Danling Zeng

Chongqing University, Chongqing, China

Paper No. IMECE2002-33146, pp. 13-18; 6 pages
doi:10.1115/IMECE2002-33146
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Advanced Energy Systems
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 0-7918-3626-6 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

Based on the first and second laws of thermodynamics simultaneously, the effect of fouling on the thermodynamic performance of convective heat transfer process through a duct with constant wall temperature and constant heat flux is investigated analytically when the flow is turbulent. A criterion evaluating the effect of fouling is defined as the entropy generation increase rate per unit heat transfer rate. The effect of Reynolds number (not considering fouling) and dimensionless inlet temperature difference and dimensionless wall heat flux on the entropy generation increase rate per unit heat transfer rate is discussed. In addition, the results with constant wall temperature are compared with that with constant wall heat flux.

Copyright © 2002 by ASME
Topics: Convection , Ducts

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In