0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of a Solid/Liquid Thermal Storage System

[+] Author Affiliations
J. S. Mulvey, R. F. Boehm

University of Nevada at Las Vegas, Las Vegas, NV

Paper No. HT2003-47147, pp. 25-32; 8 pages
doi:10.1115/HT2003-47147
From:
  • ASME 2003 Heat Transfer Summer Conference
  • Heat Transfer: Volume 1
  • Las Vegas, Nevada, USA, July 21–23, 2003
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3693-2 | eISBN: 0-7918-3679-7
  • Copyright © 2003 by ASME

abstract

A computational model utilizing the finite difference method was developed to simulate the behavior of a simple thermal storage system. The system analyzed utilizes the deposition of heat from a fluid to a solid matrix in the initial part of cycle followed by heat removal in the latter part. The storage system was divided into perpendicular slices with respect to the direction of the heat transfer fluid (HTF) flow. To further reduce the area of the slice on which the calculations were performed, the symmetry of the design was then used. Two dimensional conduction and convection calculations were performed within the plane generated by each slice. Interaction between the slices was limited to only the HTF flow rate. It was assumed that the system would experience no losses to the ambient and the HTF contained in each slice would be fully mixed. First and Second Law analysis were incorporated as a means of evaluating different configurations of the storage system design. A technique that allows the designer to choose between design options is discussed.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In