0

Full Content is available to subscribers

Subscribe/Learn More  >

Prediction of Windage Losses of an Enclosed High Speed Composite Rotor in Low Air Pressure Environments

[+] Author Affiliations
Hsing-Pang Liu, Mike Werst, Jonathan J. Hahne, David Bogard

University of Texas at Austin, Austin, TX

Paper No. HT2003-47118, pp. 15-23; 9 pages
doi:10.1115/HT2003-47118
From:
  • ASME 2003 Heat Transfer Summer Conference
  • Heat Transfer: Volume 1
  • Las Vegas, Nevada, USA, July 21–23, 2003
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3693-2 | eISBN: 0-7918-3679-7
  • Copyright © 2003 by ASME

abstract

The frictional windage losses associated with non-ventilated airflows in the air gaps between the rotor and stator of a high speed rotating machine can greatly influence the rotor outer and stator inner surface temperatures. The characteristics of the radial and axial air-gap flows have been of general interest in many engineering applications. A rotating air gap flow is very complex, and in general, can be categorized as a continuum flow, slip flow, and free molecule flow, depending on the ratio of its mean free path to the air gap dimension. For a continuum flow between concentric rotating cylinders, secondary flow of rows of circumferential Taylor vortices in the air gap due to centrifugal flow instability of a curved flow at relatively high rotating speeds will typically be formed. As the air pressure in the air gap drops significantly, rarefied gas flow, departure from continuum flow, occurs when the mean free path becomes relatively large compared to the air gap dimension. This paper has developed and summarized an analytical approach to predict high speed windage losses (rotor tip velocities up to 900 m/s) at low rotor cavity air pressures (0.1 torr to 10 torr). The predicted transient windage losses at various air pressures and high rotor speeds are compared with measured windage losses generated in continuum and slip flow regimes. The agreements between the predicted and measured windage losses are relatively well.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In