0

Full Content is available to subscribers

Subscribe/Learn More  >

Validating the Vertical Dynamic Performance of a Multi-Wheeled Combat Vehicle Computer Simulation Model

[+] Author Affiliations
Matthew J. Hillegass, James G. Faller

U.S. Army Aberdeen Test Center

Mark S. Bounds

Army Materiel Systems Analysis Activity

Moustafa El-Gindy, Seokyong Chae

Pennsylvania State University

Paper No. IMECE2005-79170, pp. 31-40; 10 pages
doi:10.1115/IMECE2005-79170
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Design Engineering, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Design Engineering Division
  • ISBN: 0-7918-4215-0 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

Performance testing is an important step in the development of any vehicle model. Generally, full-scale field tests are conducted to collect the dynamic response characteristics for evaluating the vehicle performance. However, with increases in computational power and the accuracy of simulation models, virtual testing can be extensively used as an alternative to the time consuming and costly full-scale tests, especially for severe maneuvers. Validation of the simulation results is critical for the acceptance of such simulation models. In this paper, a methodology for validating the vertical dynamic performance of a virtual vehicle has been discussed. The dynamic performance of a multi-wheeled combat vehicle model specially developed using a multi-body dynamics code was validated against the measured data obtained on the U.S. Army Aberdeen Test Center’s (ATC) test courses. The multi-wheeled combat vehicle variant computer simulation model was developed in TruckSim, a vehicle dynamic simulation software developed by the Mechanical Simulation Corporation. Prior to validating the model, the vehicle weights, dimensions, tires and suspension characteristics were measured and referenced in the specially developed computer simulation model. The data for the tire and suspension characteristics were acquired from the respective leading manufacturers in the form of look-up tables. The predictions of the vehicle vertical dynamics on different road profiles at various vehicle speeds were compared with the field test results. The time domain data for the vertical acceleration at the vehicle center of gravity, pitching, vehicle speed and the suspension/damper displacement were compared to analyze the feasibility of using the computer simulation models to predict the vertical dynamic performance of the vehicle. Based on the results it was found that the particular combat vehicle computer simulation model is capable of predicting the vertical dynamic performance characteristics.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In