0

Full Content is available to subscribers

Subscribe/Learn More  >

An Example Performance Trade-Off Evaluation Using the Integration Framework for Architecture Development (IFAD) for Conceptual Vehicle Design

[+] Author Affiliations
Xiaoyu Gu, Peter A. Fenyes

General Motors R&D and Planning

Paper No. IMECE2005-79129, pp. 23-30; 8 pages
doi:10.1115/IMECE2005-79129
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Design Engineering, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Design Engineering Division
  • ISBN: 0-7918-4215-0 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

The Integration Framework for Architecture Development (IFAD) is an integrated framework that provides fast and consistent discipline analysis results and identifies discipline consequences corresponding to vehicle design changes. This information is valuable for balancing and integration in the early design phase. In this paper, the IFAD framework is utilized to conduct an example multi-objective multi-disciplinary optimization to evaluate vehicle performance trade-offs for a hypothetical vehicle. We consider design changes on high-level geometrical dimensions including front overhang, rear overhang and vehicle width at rocker. We also study vehicle configurations including choice of materials and tires and choice of powertrains. A commonly used multi-objective genetic algorithm (MOGA) technique, Non-dominated Sorting Genetic Algorithm (NSGAII [1]) is chosen because of the mixed types of design variables involved (i.e., continuous design variables representing high-level geometrical dimensions and discrete design variables representing vehicle configurations such as powertrain selection and material choice). Vehicle performance analyses in a range of disciplines such as geometry, aerodynamics and energy are carried out automatically through IFAD. The use of response surface modeling (RSM) is desired due to the large number of evaluations typical for a MOGA application. A comparison of the engineering performance trade-offs based on two different sets of performance objectives is presented.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In