0

Full Content is available to subscribers

Subscribe/Learn More  >

A CFD Model Based Evaluation of Cost Effective NOx Reduction Strategies in a Roof-Fired Unit

[+] Author Affiliations
James Valentine, Marc Cremer, Kevin Davis

Reaction Engineering International, Salt Lake City, UT

J. J. Letcavits

AEP Pro Serv, Inc., Columbus, OH

Scott Vierstra

SAVvy Engineering LLC, Canal Winchester, OH

Paper No. IJPGC2003-40185, pp. 823-830; 8 pages
doi:10.1115/IJPGC2003-40185
From:
  • International Joint Power Generation Conference collocated with TurboExpo 2003
  • 2003 International Joint Power Generation Conference
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: Power Division
  • ISBN: 0-7918-3692-4 | eISBN: 0-7918-3677-0
  • Copyright © 2003 by ASME

abstract

To meet aggressive NOx reduction requirements, a range of NOx reduction strategies are currently available for application to pulverized coal fired furnaces. Utilities must assess the benefits and drawbacks of each viable NOx control technology to develop the best strategy for unit specific NOx control that fits within the utilities’ overall compliance plan. The installation of high capital and operating cost NOx reduction technologies, such as selective catalytic reduction, is cost prohibitive on many units. Lower cost technologies, although not capable of SCR level NOx reductions, can provide a more cost-effective approach and still achieve compliance over the fleet. This paper describes how computational fluid dynamic (CFD) modeling has been utilized by an experienced group of combustion engineers to evaluate and design cost effective NOx reduction strategies applied to a relatively unique PC fired unit, a B&W 150 MW roof-fired furnace. The unit fires bituminous coal through 10 multi-tip burners and is equipped with 10 NOx ports located below the burners. A baseline CFD model was first constructed and the predicted model results were compared with available data including NOx and CO emissions, as well as unburned carbon in fly ash. Upon completion of the baseline model, combustion alterations, including deeper staging, were evaluated. Specific burner adjustments were evaluated to allow for the deeper staging without significantly increasing unburned carbon in the fly ash, CO emissions, or near burner slagging. The CFD model was also utilized to evaluate the impact of water injection. AEP has previously utilized water injection to reduce peak combustion temperatures and thermal NOx formation rates in coal fired units for incremental NOx reductions. It is crucial that the NOx production zones in the downstream portion combustion field be identified, since these regions are most likely to produce NOx that will not be subsequently reduced prior to exiting the furnace. The CFD model was utilized to identify the most appropriate regions for water injection combined with the other combustion alterations. The results showed that NOx emissions could be reduced in this unit by approximately 37% from baseline full load emissions with no associated increase in unburned carbon in the fly ash or furnace exit CO. Burner alterations and water injection equipment based on the CFD model evaluation are currently being installed. Comparisons between the model predictions and the post retrofit performance will be provided.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In