0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Mechanical Vibration on Osteoblast-Like Cell Line

[+] Author Affiliations
M. Kumaoka, T. Shiraishi, S. Morishita

Yokohama National University

Paper No. IMECE2005-81980, pp. 83-86; 4 pages
doi:10.1115/IMECE2005-81980
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Advances in Bioengineering
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4213-4 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

Bone formation is subject in vivo to mechanical stimulation. Though many researches for bone cells of osteoblastic lineage sensing and responding to mechanical stimulation have been reported mainly in the biochemical field, the effects of mechanical stimulation are not so understood. In this study, in order to clarify the effects of mechanical vibration on osteoblast-like cells on the basis of the dynamic properties of the cells in the sense of vibration engineering, sinusoidal excitation was applied to the cells, and their cell proliferation and bone matrix generation were investigated as their frequency response. We developed an electromagnetic exciter of culture plates of the cells, which was designed with high stiffness to excite the whole area of the plates uniformly. We seeded MC3T3-E1, which is a mouse calvaria osteoblast-like cell line, and applied sinusoidal excitation for 24 hours a day for 28 days at the frequency of 12.5 or 100 Hz, setting the acceleration amplitude of 0.5 G to fix the inertia force to the cells. As the experimental results of counting the number of the cells using a hemocytometer, the cell density of all the vibrating groups was higher than that of the non-vibrating group after 14-day cultivation. In the most effective case of the frequency of 12.5 Hz and the cultured period of 25 days, the cell density of the vibrating group was higher than that of the non-vibrating group by about 26 %. That was also morphologically shown by the microscopic observation of the cells. By staining the cells with alizarin red S solution, the amount of the generated calcium salts as one of the bone matrices was measured. The amount of the calcium salts of the vibrating groups was higher than that of the non-vibrating group on 28-day cultivation. The number and the size of the nodules of the calcium salts were different depending on the excited frequency. These results of this study suggest that the mechanical vibration promotes the cell proliferation and the bone matrix generation, and that the effects of the mechanical vibration depend on the frequency.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In