0

Full Content is available to subscribers

Subscribe/Learn More  >

Improvement of Selective Catalytic Reduction System Performance in Combined Cycle Power Plants

[+] Author Affiliations
Anatoly Sobolevskiy, Tom Czapleski, Richard Murray

Siemens Westinghouse Power Corporation, Orlando, FL

Paper No. IJPGC2003-40090, pp. 719-722; 4 pages
doi:10.1115/IJPGC2003-40090
From:
  • International Joint Power Generation Conference collocated with TurboExpo 2003
  • 2003 International Joint Power Generation Conference
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: Power Division
  • ISBN: 0-7918-3692-4 | eISBN: 0-7918-3677-0
  • Copyright © 2003 by ASME

abstract

Environmental regulations are very stringent in the U.S., requiring very low emissions of nitrogen oxides (NOx) from combined cycle power plants. Selective Catalytic Reduction (SCR) systems utilizing vanadium pentoxide (V2 O5 ) as the active material in the catalyst are a proven method of reducing NOx emissions in the exhaust stack of gas turbines with heat recovery steam generators (HRSG) to 2–4 ppmvd. These low NOx emissions levels require an increase of SCR removal efficiency to the level of 90+ % with limited ammonia slip. The distribution of flow velocities, temperature, and NOx mass flow at the inlet of the SCR are critical to minimizing NOx and ammonia (NH3 ) concentrations in HRSG stack. The short distance between the ammonia injection grid and the catalyst in the HRSG complicates the achievement of homogeneous NH3 and NOx mixture. To better understand the influence of the above factors on overall SCR system performance, field testing of combined cycle power plants with an SCR installed in the HRSG has been conducted. Uniformity of exhaust flow, temperature and NOx emissions upstream and downstream of the SCR were examined and the results served as a basis for SCR system tuning in order to increase its efficiency. NOx mass flow profiles upstream and downstream of the SCR were used to assess ammonia distribution enhancement. Ammonia flow adjustments within a cross section of the exhaust gas duct yielded significantly improved NOx mass flow uniformity after the SCR while reducing ammonia consumption. Based on field experience, a procedure for ammonia distribution grid tuning was developed and recommendations for SCR performance improvement were generated.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In