0

Full Content is available to subscribers

Subscribe/Learn More  >

Prototype of Microcapsule Including a Gas Bubble for Developing Shock Wave Drug Delivery Systems

[+] Author Affiliations
Masaaki Tamagawa, Ichiro Yamanoi

Kyushu Institute of Technology

Paper No. IMECE2005-80697, pp. 15-18; 4 pages
doi:10.1115/IMECE2005-80697
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Advances in Bioengineering
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4213-4 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

This paper describes the trial of making microcapsules including a bubble for shock wave drug delivery systems and evaluation of their mechanical properties. We have proposed drug delivery systems (DDS) using shock waves in order to apply micro/nano technology in the fields of biomedical engineering. In this system, a microcapsule including a gas bubble is flown in the blood vessel, and finally broken by shock induced microjet, then drug is reached to the affected part in the body as same as traditional DDS. In this paper, the mechanism for deformation and disintegration of capsules in our previous works is reviewed, and the trials of making special microcapsules are discussed. To determine Young’s modulus of capsule membrane mentioned above, the membrane is deformed by the aspiration device and the deformation is compared with computational result by FEM.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In