Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of a Duct Burner Design Using CFD in Comparison With Full-Scale Experiments

[+] Author Affiliations
Michael A. Lorra, Carol A. Schnepper, Stephen Somers

John Zink Company, Tulsa, OK

Paper No. IJPGC2003-40080, pp. 461-466; 6 pages
  • International Joint Power Generation Conference collocated with TurboExpo 2003
  • 2003 International Joint Power Generation Conference
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: Power Division
  • ISBN: 0-7918-3692-4 | eISBN: 0-7918-3677-0
  • Copyright © 2003 by ASME


Most new duct burners are supplied to heat recovery steam generator (HRSG) manufacturers for use in cogeneration systems. Key components of a simple cycle cogeneration plant include a turbine, generator, turbine exhaust gas duct, duct burner (optional), HRSG and downstream flue gas cleaning equipment. New developments in gas turbine technology are changing the boundary conditions for supplemental firing. In response, John Zink has an ongoing research project for the development of new duct burners achieving ultra low NOx emissions maintaining a good flame quality. The scope of this research work includes computational fluid dynamic modeling (CFD) and experimental testing of current design duct burner to obtain baseline data comparable with CFD results, and various experimental configurations through a full range of expected operating conditions. Experimental testing is performed in a test furnace at John Zink Company, Tulsa. Turbine exhaust gas (TEG) is simulated using John Zink Duct burners, which are supplied with air from a combustion air fan. Different O2 levels can be achieved by a combined water/steam injection. The temperature level of the TEG to the test burner can be adjusted with an air-cooled heat exchanger. Temperature and concentration measurements can be made at the test burner location and in the stack. Flame length, as well as NOx and CO emissions were measured for each data point. CFD modeling focused on the performance effects of turbine exhaust gas flow mal-distribution and the investigation on how reliable CFD models are, regarding flame stability calculations and NOx production. The results of this comprehensive testing and results from the CFD calculations will be compared and presented.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In