0

Full Content is available to subscribers

Subscribe/Learn More  >

Nonlinear Vibrations of Rectangular Plates With Different Boundary Conditions: Theory and Experiments

[+] Author Affiliations
M. Amabili, C. Augenti

Università di Parma

Paper No. IMECE2005-82425, pp. 257-267; 11 pages
doi:10.1115/IMECE2005-82425
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Applied Mechanics
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Applied Mechanics Division
  • ISBN: 0-7918-4212-6 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

Large-amplitude vibrations of rectangular plates subjected to harmonic excitation are investigated. The von Kármán nonlinear strain-displacement relationships are used to describe the geometric nonlinearity. A specific boundary condition, with restrained normal displacement at the plate edges and fully free in-plane displacements, not previously considered, has been introduced as a consequence that it is very close to the experimental boundary condition. Results for this boundary condition are compared to nonlinear results previously obtained for: (i) simply supported plates with immovable edges; (ii) simply supported plates with movable edges, and (iii) fully clamped plates. The nonlinear equations of motion are studied by using a code based on arclength continuation method. A thin rectangular stainless-steel plate has been inserted in a metal frame; this constraint is approximated with good accuracy by the newly introduced boundary condition. The plate inserted into the frame has been measured with a 3D laser system in order to reconstruct the actual geometry and identify geometric imperfections (out-of-planarity). The plate has been experimentally tested in laboratory for both the first and second vibration modes for several excitation magnitudes in order to characterize the nonlinearity of the plate with imperfections. Numerical results are able to follow experimental results with good accuracy for both vibration modes and for different excitation levels once the geometric imperfection is introduced in the model. Effects of geometric imperfections on the trend of nonlinearity and on natural frequencies are shown; convergence of the solution with the number of generalized coordinates is numerically verified.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In