Full Content is available to subscribers

Subscribe/Learn More  >

Theoretical and Experimental Analysis of Heavy Duty Gas Turbine Performance Depending on Ambient Conditions

[+] Author Affiliations
S. Brusca, R. Lanzafame

University of Catania, Catania, Italy

Paper No. IJPGC2003-40044, pp. 405-412; 8 pages
  • International Joint Power Generation Conference collocated with TurboExpo 2003
  • 2003 International Joint Power Generation Conference
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: Power Division
  • ISBN: 0-7918-3692-4 | eISBN: 0-7918-3677-0
  • Copyright © 2003 by ASME


A mathematical model of a heavy duty gas turbine has been implemented using GateCycle™ code. This model is able to simulate the engine behavior running on syngas and fuel oil. Also engine control logic is implemented using Microsoft Excel™ VBA language. The model implemented has been finely tuned and tested with measured data. Test results show that it is able to simulate engine running in on-design and off-design conditions. Using this model, an extensive thermodynamic analysis of light fuel oil and syngas fed engine performance has been carried out in respect of ambient conditions. As it is possible to see in the results of the thermodynamic analysis, at high air temperatures performance reduction occur. Relative humidity have a slightly effect on engine performance when the latter is running on syngas. Instead it doesn’t have a relevant effect on the performance of the engine running on light liquid fuel oil in all the range of ambient temperature investigated. Results of this analysis also show the correct replication of the engine control system. In conclusion, the developed mathematical model is able to simulate gas turbine operations with low errors. So that, it could be used in order to optimise engine performance at the ambient conditions that occur for the site of the IGCC Complex in which gas turbine has integrated as topper.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In