0

Full Content is available to subscribers

Subscribe/Learn More  >

Comparison of the Strain Localization Approaches: Viscoplasticity Theory and Gradient Dependent Theory

[+] Author Affiliations
George Z. Voyiadjis, Rashid K. Abu Al-Rub

Louisiana State University

Paper No. IMECE2005-81424, pp. 79-87; 9 pages
doi:10.1115/IMECE2005-81424
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Applied Mechanics
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Applied Mechanics Division
  • ISBN: 0-7918-4212-6 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

This work is focused on the comparison between the two strain localization techniques namely, the viscoplasticity and the gradient dependent theory. In the first approach a length-scale parameter is introduced implicitly through viscosity in order to address strain localization and material instability in the (initial) boundary value problems. The second approach is the enhanced nonlocal gradient-dependent theory which formulates a constitutive framework on the continuum level that is used to bridge the gap between the micromechanical theories and the classical (local) continuum. It is successful in explaining the size effects encountered at the micron scale and in preserving the well-posedeness of the (initial) boundary value problems governing the solution of material instability triggering strain localization. This is due to the explicit incorporation of an intrinsic material length scale parameter in the constitutive description. These numerical examples prove the excellent performance of the present frameworks in describing the strain localization problem.

Copyright © 2005 by ASME
Topics: Viscoplasticity

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In