0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Analysis of a Hyperbolic Composite Coupling

[+] Author Affiliations
H. Ghoneim

Rochester Institute of Technology

D. J. Lawrie

Lawrie Technology, Inc.

Paper No. IMECE2005-79558, pp. 1-10; 10 pages
doi:10.1115/IMECE2005-79558
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Applied Mechanics
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Applied Mechanics Division
  • ISBN: 0-7918-4212-6 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

A novel hyperbolic composite coupling is proposed. In addition to enjoying the advantages of composite materials, the proposed coupling can be readily integrated with composite drive shaft into a single unit. A mathematical model of the coupling is developed based on the Timoshenko beam theory using the energy approach and the extended Lagrange’s equations. The corresponding discrete equation of vibration is obtained using the finite element method and solved for the natural frequencies using MATLAB. The dynamic characteristics of the coupling (Axial, torsional and bending natural frequencies) are studied in order to assess the merits and potential of the proposed coupling.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In