0

Full Content is available to subscribers

Subscribe/Learn More  >

Integrated Eco-Thermal Management for Aerospace

[+] Author Affiliations
Lev Reznikov

Beltran, Inc.

Paper No. IMECE2005-82865, pp. 157-170; 14 pages
doi:10.1115/IMECE2005-82865
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Advanced Energy Systems
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 0-7918-4211-8 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

Thermal Management System developed for aerospace carriers (missile, aircraft, space station), bounds processes of generation and dissipation, transfer and conversion of power, refrigeration, and of bio-metabolism related substances. Local ecosystem of the carrier combines technological and biological subsystems, interacting with internal and outer spaces. The conceptual IETM System performs recovery of waste thermal energy, generation of “free” refrigeration, and recovery of byproducts into safe coolants (ammonia - water). Thermal Management solutions include novel technologies of intensification of the heat transfer and of conversion of the waste resources into refrigeration for extension of cooling capabilities for high heat radars, lasers and microwave generators. The IETM includes Vacuum-Evaporative Refrigeration (VER) utilizing “free natural” vacuum and waste heat-activated refrigeration circuits. VER generates ~1000 Btu of “free” cold per pound of wastewater or ammonia. The introduced high performance microstructure of compound electrohydrodynamic (EHD) boundary microsystems intensifies nucleate boiling, preventing dryout. The coils of the microwires adjoin to the boiling surface and form precision microstructure of heat sink with microchannels between the coils and the surface. The microcavities form the active bubbling nucleation sites along the spiral zones of contacts of the microwires and basic surfaces. The fins-microelectrodes develop additional heat transfer surface and evenly distributed spiral zones of the nucleation sites. Like fibers of a fine wick, the electric forces in EHD capillary structures of the microelectrodes retain the liquid and push out generated vapor bubbles from the surface. Good manufacturability and performance of novel MEMS are based on well-developed materials and common winding technology “borrowed” from electrotechnical industry. Conversion of waste resources into refrigeration and EHD activation of boiling allow meeting strong limitations in weight, reliability and consumption of energy. These conceptual approaches provide diversities in refrigeration capabilities for IETM.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In