Full Content is available to subscribers

Subscribe/Learn More  >

Counterflow Heat Exchanger Model for Thermal Management of a Compact Catalytic Fuel Processor System

[+] Author Affiliations
Amit Dhingra, Hong G. Im

University of Michigan

Paper No. IMECE2005-81481, pp. 135-141; 7 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Advanced Energy Systems
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 0-7918-4211-8 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Recent progress in the fuel cell technology has attracted research interests in providing hydrogen in a safe and efficient manner. One of viable approaches is to develop on-board catalytic fuel processors which converts higher hydrocarbon fuels into hydrogen. While this is a promising method and the level of catalytic material development is mature, the compact fuel processor system suffers from relatively low efficiency primarily due to the large surface-to-volume ratio causing excessive heat loss to the ambient. In this paper, a systematic modeling approach is presented as an effective tool to undertake extensive parametric study to identify crucial design parameters to accomplish optimal thermal management of the fuel processor system. By adopting a canonical counterflow heat exchanger system, effects of key system parameters, such as reactant and control flow rates, and inlet temperatures, on the system efficiency, conversion, and reactive length are investigated. The model is applied to a partial oxidation reactor and results are discussed.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In