Full Content is available to subscribers

Subscribe/Learn More  >

Scavenging Energy From Piezoelectric Materials for Wireless Sensor Applications

[+] Author Affiliations
Christopher Green, Karla M. Mossi

Virginia Commonwealth University

Robert G. Bryant

NASA Langley Research Center

Paper No. IMECE2005-80426, pp. 93-99; 7 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Advanced Energy Systems
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 0-7918-4211-8 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Wireless sensors are an emerging technology that has the potential to revolutionize the monitoring of simple and complex physical systems. Prior research has shown that one of the biggest issues with wireless sensors is power management. A wireless sensor is simply not cost effective unless it can maintain long battery life or harvest energy from another source. Piezoelectric materials are viable conversion mechanisms because of their inherent ability to covert vibrations to electrical energy. Currently a wide variety of piezoelectric materials are available and the appropriate choice for sensing, actuating, or harvesting energy depends on their characteristics and properties. This study focuses on evaluating and comparing three different types of piezoelectric materials as energy harvesting devices. The materials utilized consisted on PZT 5A, a single crystal PMN 32%PT, and a PZT 5A composite called Thunder. These materials were subjected to a steady sinusoidal vibration provided by a shaker at different power levels. Gain of the devices was measured at all levels as well as impedance in a range of frequencies was characterized. Results showed that the piezoelectric generator coefficient, g33, predicts the overall power output of the materials as verified by the experiments. These results constitute a baseline for an energy harvesting system that will become the front end of a wireless sensor network.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In