Full Content is available to subscribers

Subscribe/Learn More  >

Elastic Properties of Single-Walled Carbon Nanotubes in Axial and Transverse Directions: A First Principles Study

[+] Author Affiliations
X. Song, Q. Ge, S.-C. Yen

Southern Illinois University Carbondale, Carbondale, IL

Paper No. NANO2005-87047, pp. 47-48; 2 pages
  • ASME 4th Integrated Nanosystems Conference
  • Design, Synthesis, and Applications
  • Berkeley, California, USA, September 12–14, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4208-8 | eISBN: 0-7918-3771-8
  • Copyright © 2005 by ASME


A first principles approach has been employed to study the elastic properties of ten zigzag and seven armchair types of single-walled carbon nanotubes (SWNTs) with the diameter varied from 0.551 to 1.358 nm. The linear elastic behavior of the SWNTs when subject to small deformation is studied by four virtual mechanical experiments: uniaxial strain, uniaxial stress, in-plane pure shear, and in-plane bi-axial tension tests. Assuming that a SWNT be transversely isotropic, a strain energy approach is used to calculate the Young’s moduli in axial and transverse directions, major Posson’s ratio, plain strain bulk, and in-plane shear moduli of the carbon nanotubes. It is found that the elastic constants are insensitive to the tube size, but show a slight dependence upon the helicity. However, the differences in the elastic moduli between zigzag and armchair nanotubes are within 10%.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In