Full Content is available to subscribers

Subscribe/Learn More  >

Fabrication of First-Level Carbon Nanotube Interconnect Via Structures by Thermal Chemical Vapor Deposition

[+] Author Affiliations
Yunyu Wang, Zhen Yao, Shi Li, Paul S. Ho

University of Texas at Austin, Austin, TX

Paper No. NANO2005-87086, pp. 31-32; 2 pages
  • ASME 4th Integrated Nanosystems Conference
  • Design, Synthesis, and Applications
  • Berkeley, California, USA, September 12–14, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4208-8 | eISBN: 0-7918-3771-8
  • Copyright © 2005 by ASME


As devices continue to scale down to the 50 nm technology node, current Cu/low k interconnect technology will face a number of challenges including reduced current carrying capabilities, decreased thermal conductivity, and reliability problems due to electromigration at large current densities. Carbon nanotubes (CNTs) with their unique structural, thermal and electrical transport properties have been suggested as a promising candidate as interconnect structures for future microelectronics. In this study we have demonstrated the growth of vertically aligned, highly dense CNT arrays by thermal chemical vapor deposition (CVD). It was found that a thin layer of tantalum (Ta), which was originally used as the barrier layer in copper interconnects, may enhance a uniform growth and better vertical alignments of CNT arrays. We have also developed a nanofabrication process of the first-level CNT via structures.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In