Full Content is available to subscribers

Subscribe/Learn More  >

Nano-Imprint Fabrication of Injectable, Stimuli-Responsive Drug Delivery Vehicles

[+] Author Affiliations
Luz Cristal S. Glangchai, Li Shi, Krishnendu Roy

University of Texas at Austin, Austin, TX

Paper No. NANO2005-87069, pp. 23-24; 2 pages
  • ASME 4th Integrated Nanosystems Conference
  • Design, Synthesis, and Applications
  • Berkeley, California, USA, September 12–14, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4208-8 | eISBN: 0-7918-3771-8
  • Copyright © 2005 by ASME


Nanofabrication techniques are developed to create well-defined and characterized drug delivery devices that overcome the limitations of current methods. Our approach is to use novel, top-down nano-fabrication technologies, including thermal nano-imprinting and step-and flash imprint lithography (S-FIL), coupled with stimuli-responsive polymer membranes to develop injectable nanocontainers that can release drug only in response to specific physiological signals at specific cellular locations.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In