0

Full Content is available to subscribers

Subscribe/Learn More  >

High Heat Flux Liquid-Cooled Porous Metal Heat Sink

[+] Author Affiliations
Mark T. North, Wei-Lin Cho

Thermacore, Inc., Lancaster, PA

Paper No. IPACK2003-35320, pp. 681-686; 6 pages
doi:10.1115/IPACK2003-35320
From:
  • ASME 2003 International Electronic Packaging Technical Conference and Exhibition
  • 2003 International Electronic Packaging Technical Conference and Exhibition, Volume 2
  • Maui, Hawaii, USA, July 6–11, 2003
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3690-8 | eISBN: 0-7918-3674-6
  • Copyright © 2003 by ASME

abstract

An advanced heat sinking technology is described in which heat is dissipated by flowing the liquid coolant through a matrix of well-bonded metallic particles. This porous metal heat sink has the capability to dissipate heat flux of 500W/cm2 or more with a unit area thermal resistance of 0.1°C·cm2 /W. The construction of one incarnation of this class of heat sink developed for cooling of a high-power stack of laser diode arrays is described. Tradeoffs between pressure drop and thermal resistance are identified with regard to particle size and other geometric parameters. The patented manifolding geometry allows the cooling area to be scaled up without significantly increasing the overall pressure drop. Experimental data showing thermal resistance and pressure drop at a variety of different water flow rates is also presented. Applications for this technology can include cooling of laser diode arrays and high power electronic components such as CPUs.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In