0

Full Content is available to subscribers

Subscribe/Learn More  >

Chip Level Refrigeration of Portable Electronic Equipment Using Thermoelectric Devices

[+] Author Affiliations
Gary L. Solbrekken, Kazuaki Yazawa

University of Minnesota, Minneapolis, MN

Avram Bar-Cohen

University of Maryland, College Park, MD

Paper No. IPACK2003-35305, pp. 647-652; 6 pages
doi:10.1115/IPACK2003-35305
From:
  • ASME 2003 International Electronic Packaging Technical Conference and Exhibition
  • 2003 International Electronic Packaging Technical Conference and Exhibition, Volume 2
  • Maui, Hawaii, USA, July 6–11, 2003
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3690-8 | eISBN: 0-7918-3674-6
  • Copyright © 2003 by ASME

abstract

It is well established that the power dissipation for electronic components is increasing. At the same time, high performance portable equipment with volume, weight, and power limitations are gaining widespread acceptance in the marketplace. The combination of the above conditions requires thermal solutions that are high performance and yet small, light, and power efficient. This paper explores the possibility of using thermoelectric (TE) refrigeration as an integrated solution for portable electronic equipment accounting for heat sink and interface material thermal resistances. The current study shows that TE refrigeration can indeed have a benefit over using just a heat sink. Performance maps illustrating where TE refrigeration offers an advantage over an air-cooled heat sink are created for a parametric range of CPU heat flows, heat sink thermal resistances, and TE material properties. During the course of the study, it was found that setting the TE operating current based on minimizing the CPU temperature (Tj ), as opposed to maximizing the amount of heat pumping, significantly reduces Tj . For the baseline case studied, a reduction of 20–30°C was demonstrated over a range of CPU heat dissipation. The parametric studies also illustrate that management of the heat sink thermal resistance appears to be more critical than the CPU/TE interfacial thermal resistance. However, setting the TE current based on a minimum Tj as opposed to maximum heat pumping reduces the system sensitivity to the heat sink thermal resistance.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In