Full Content is available to subscribers

Subscribe/Learn More  >

Orientation-Independent Atomization Heat Transfer Cell for Thermal Management of Microelectronics

[+] Author Affiliations
Samuel N. Heffington, Ari Glezer

Georgia Institute of Technology, Atlanta, GA

Paper No. IPACK2003-35299, pp. 635-640; 6 pages
  • ASME 2003 International Electronic Packaging Technical Conference and Exhibition
  • 2003 International Electronic Packaging Technical Conference and Exhibition, Volume 2
  • Maui, Hawaii, USA, July 6–11, 2003
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3690-8 | eISBN: 0-7918-3674-6
  • Copyright © 2003 by ASME


This paper describes a new gravity-independent version of a two-phase cooling, closed heat transfer cell, similar to a thermosyphon. The cooling method is based upon a Vibration-Induced Droplet Atomization, or VIDA, process that can generate small liquid droplets inside a closed cell and propel them onto a heated surface. The VIDA technique involves the violent break-up of a liquid film into a shower of droplets by vibrating a piezoelectric actuator and accelerating the liquid film at resonant conditions. A piezoelectric diaphragm pump is used to supply a constant stream of liquid to the VIDA atomizer enabling gravity-independent operation. The atomized secondary droplets continually coat the heated surface with a thin liquid film that evaporates. The resulting vapor is condensed on internal surfaces of the heat transfer cell as well as the liquid working fluid. The condensed liquid is collected and returned to the atomizing driver by the piezoelectric diaphragm pump. A small-scale gravity independent VIDA atomizer generating spherical droplets of relatively uniform diameter and having sufficient momentum to reach the remotely located heated source has been constructed. Initial test data described in this study include the operating characteristics of the VIDA spray and heat transfer capabilities. Heat dissipation levels as high as 195 W have been measured from an evaporation surface held below 120°C at atmospheric pressure.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In