0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Management of Airbourne Early Warning and Electronic Warfare Systems Using Foam Metal Fins

[+] Author Affiliations
John Klein, George Gilchrist, Jim Karanik, Noe Arcas, Richard Yurman, James Whiteside, Bill Shields, Tony Bartilucci

Northrop Grumman, Bethpage, NY

Paper No. IPACK2003-35187, pp. 395-400; 6 pages
doi:10.1115/IPACK2003-35187
From:
  • ASME 2003 International Electronic Packaging Technical Conference and Exhibition
  • 2003 International Electronic Packaging Technical Conference and Exhibition, Volume 2
  • Maui, Hawaii, USA, July 6–11, 2003
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3690-8 | eISBN: 0-7918-3674-6
  • Copyright © 2003 by ASME

abstract

This program, addresses the need for thermal management of increasingly powerful and densely packaged electronic devices. Open-celled foams and lattice structures offer the promise of much improved heat transfer between the coolant and the solid structure of the lattice compared to traditional finned heat exchangers. The focus of this program is to evaluate integration of foam and lattice materials as heat exchanger cores and as electronic racks. The potential benefits of this approach include reduction in the volume and weight of the heat exchanger core and/or device junction temperature as well as direct attach cooling of high power electronics. To begin we have selected two major applications, a liquid cooling system heat exchanger, and avionics rack cooling. There is little data on foam metal heat transfer in the regime we anticipate for aircraft applications. Our approach begins with the measurement of heat transfer characteristics of compressed foam metals under conditions suitable for aircraft applications. Basic heat transfer data is being obtained for heat removal from a heated surface by “foam metal fins” with air flowing through the foam. Effective heat transfer coefficient and airflow resistance have been measured. The test method and apparatus are briefly described. Results of heat transfer measurements to date are presented. A theoretical model of “foam metal fins” has been developed and is applied for scaling foam metal fins within our test matrix. Using the model we determine the heat transfer coefficient between the air and foam ligaments. These heat transfer coefficients are compared with cylinders in cross flow. We applied our measured heat transfer characteristics to the design, fabrication and verification test of a highly efficient heat exchanger core. A laboratory scale thermal performance demonstration core was sized based on our test results. Initial tests of a single air / liquid heat exchanger core leg validates our core sizing. Our results can also be applied to cooling of individual electronic components as well as cold plates for electronics.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In