0

Full Content is available to subscribers

Subscribe/Learn More  >

Integration of a Molecular Viscosity Model and a Continuum EHL Solution for Simulation of Thin Film Lubrication

[+] Author Affiliations
A. Martini, Y. Liu, R. Q. Snurr, Q. Wang

Northwestern University, Evanston, IL

Paper No. WTC2005-63091, pp. 721-722; 2 pages
doi:10.1115/WTC2005-63091
From:
  • World Tribology Congress III
  • World Tribology Congress III, Volume 2
  • Washington, D.C., USA, September 12–16, 2005
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4202-9 | eISBN: 0-7918-3767-X
  • Copyright © 2005 by ASME

abstract

We present a simulation approach for thin film lubrication that integrates a molecular model of the film thickness-viscosity relationship in thin films with a continuum elastohydrodynamic (EHL) lubricated contact solution. Molecular simulation is used to characterize the effect of film thickness on viscosity in terms of solidification, shear thinning, and oscillation. This relationship is then incorporated into a traditional, continuum EHL solution. Film thickness distributions predicted by this integrated model are evaluated. It is found that the effect of the molecular film thickness-viscosity model is small compared to the increase in viscosity with pressure predicted by the Barus equation.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In