0

Full Content is available to subscribers

Subscribe/Learn More  >

Inkjet Assisted Spray Cooling of Electronics

[+] Author Affiliations
Cullen E. Bash, Chandrakant D. Patel, Ratnesh K. Sharma

Hewlett-Packard Laboratories, Palo Alto, CA

Paper No. IPACK2003-35058, pp. 119-127; 9 pages
doi:10.1115/IPACK2003-35058
From:
  • ASME 2003 International Electronic Packaging Technical Conference and Exhibition
  • 2003 International Electronic Packaging Technical Conference and Exhibition, Volume 2
  • Maui, Hawaii, USA, July 6–11, 2003
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3690-8 | eISBN: 0-7918-3674-6
  • Copyright © 2003 by ASME

abstract

Increases in microprocessor power dissipation and the resulting effect on the cost and complexity of thermal management solutions has been well documented in recent years. Accompanying this increase in overall power dissipation has been a reduction in feature size due to process improvements resulting in a steady decrease in the size of the processing core where most of the power on a die is generated. This trend is expected to continue into the near future and will likely lead to a power dense core covering a fraction of the total die surface area surrounded by areas of reduced power density cache. Evaporative spray cooling has been long identified as a technology that can be used to manage very high power densities (> 100 W/cm2 ). Limitations in the controllability of individual spray droplets, however, have generally prevented its use in applications that contain marked variation in spatial power density. Since only a relatively uniform spray pattern is possible with existing spray delivery technologies, sections of lower power density become susceptible to pool boiling and thereby place limitations on bulk flow rates, which accordingly limit thermal performance. Conversely, variations in heat transfer coefficients caused by uncontrolled pool boiling across devices can create thermal stresses. In this paper we demonstrate how thermal inkjet technology can be effectively utilized to spray cool a heat source with non-uniform power density. Experimental data is presented for a water-cooled heat source and critical heat fluxes of up to 270 W/cm2 are reported. Additionally, correlations are developed for the unique spray pattern afforded by the technology.

Copyright © 2003 by ASME
Topics: Cooling , Sprays , Electronics

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In