Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Characteristics of Graphite Foam Thermosyphon for Electronics Cooling

[+] Author Affiliations
Hongkoo Roh

Electronics and Telecommunications Research Institute, Daejeon, South Korea

Jungho Kim, Paul J. Boudreaux

University of Maryland, College Park, MD

Paper No. IPACK2003-35002, pp. 41-46; 6 pages
  • ASME 2003 International Electronic Packaging Technical Conference and Exhibition
  • 2003 International Electronic Packaging Technical Conference and Exhibition, Volume 2
  • Maui, Hawaii, USA, July 6–11, 2003
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3690-8 | eISBN: 0-7918-3674-6
  • Copyright © 2003 by ASME


Graphite foams consist of a network of interconnected graphite ligaments and are beginning to be applied to thermal management of electronics. The thermal conductivity of the bulk graphite foam is similar to aluminum, but graphite foam has one-fifth the density of aluminum. This combination of high thermal conductivity and low density results in a specific thermal conductivity about five times higher than that of aluminum, allowing heat to rapidly propagate into the foam. This heat is spread out over the very large surface area within the foam, enabling large amounts of energy to be transferred with relatively low temperature difference. For the purpose of graphite foam thermosyphon design in electronics cooling, various effects such as graphite foam geometry, sub-cooling, working fluid effect, and liquid level were investigated in this study. The best thermal performance was achieved with the large graphite foam, working fluid with the lowest boiling point, a liquid level with the exact height of the graphite foam, and at the lowest sub-cooling temperature.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In