Full Content is available to subscribers

Subscribe/Learn More  >

Tribocatalytic Enhancement of Methane Oxidation

[+] Author Affiliations
Tomotaka Abe, Ken’ichi Hiratsuka

Chiba Institute of Technology, Narashino, Chiba, Japan

Czesław Kajdas

Warsaw University of Technology, Płock, Poland

Paper No. WTC2005-64034, pp. 919-920; 2 pages
  • World Tribology Congress III
  • World Tribology Congress III, Volume 1
  • Washington, D.C., USA, September 12–16, 2005
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4201-0 | eISBN: 0-7918-3767-X
  • Copyright © 2005 by ASME


Oxidation reaction of methane is one of the most fundamental reactions in organic chemistry. This reaction is enhanced by silver catalyst [1]. In this study, we confirmed that the catalytic activity of silver is enhanced more by the friction. This effect is called tribocatalysis. In previous studies about tribocatalysis, we have shown that the oxidation reactions of hydrogen [2], carbon monoxide [3] and ethylene were promoted by the friction. According to NIRAM (negative-ion-radical action mechanism) approach, exo-electron emission triggers the promotion of chemical reactions [4]. Insulator such as aluminum oxide, when it is worn, emits larger number of negative particles including electrons compared with metals [5]. Therefore we expected that the friction of aluminum oxide promotes tribochemical reactions more than metals.

Copyright © 2005 by ASME
Topics: Methane , oxidation



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In