0

Full Content is available to subscribers

Subscribe/Learn More  >

Use of CFD Modeling for Design of NOx Reduction Systems in Utility Boilers

[+] Author Affiliations
Bradley Adams, Marc Cremer, James Valentine

Reaction Engineering International, Salt Lake City, UT

Venkata Bhamidipati

Conectiv, Beesley Point, NJ

David O’Connor

EPRI

J. J. Letcavits

AEP Pro Serv, Inc., Columbus, OH

Scott Vierstra

SAVvy Engineering, LLC, Canal Winchester, OH

Paper No. IJPGC2002-26081, pp. 695-702; 8 pages
doi:10.1115/IJPGC2002-26081
From:
  • 2002 International Joint Power Generation Conference
  • 2002 International Joint Power Generation Conference
  • Scottsdale, Arizona, USA, June 24–26, 2002
  • Conference Sponsors: Power Division
  • ISBN: 0-7918-3617-7 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME

abstract

CFD modeling has found increasing use in the design and evaluation of utility boiler retrofits, combustion optimization and NOx reduction technologies. This paper reviews two recent examples of CFD modeling used in the design and evaluation of NOx reduction technologies. The first example involves the staging of furnace combustion through use of overfire air (OFA) to reduce NOx emission in a B&W opposed-wall fired pc furnace. Furnace simulations identified locations of highest flue gas mass flows and highest CO concentrations and were used to identify OFA port placement for maximum NOx reduction with lowest increases in unburned carbon in fly ash and CO emission. Simulations predicted a 34% reduction in NOx emission with OFA. The second example summarizes the design and application of RRI with OFA and SNCR in a 138 MW cyclone-fired boiler. Simulations were used to design an aminebased injection system for the staged lower furnace and to evaluate NOx reduction and ammonia slip of the RRI system. Field-testing confirmed modeling predictions and demonstrated that the RRI system alone could achieve 25–30% NOx reduction beyond OFA levels with less than 1 ppm ammonia slip and that RRI in combination with SNCR could achieve 50–55% NOx reduction with less than 5 ppm slip.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In