Full Content is available to subscribers

Subscribe/Learn More  >

Modelling and Simulation for Extra Heavy Oil Gasification on Entrained Flow Gasifier

[+] Author Affiliations
Hiroaki Watanabe, Maromu Otaka, Saburo Hara, Masami Ashizawa, Kazuhiro Kidoguchi, Jun Inumaru

Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa, Japan

Paper No. IJPGC2002-26062, pp. 667-674; 8 pages
  • 2002 International Joint Power Generation Conference
  • 2002 International Joint Power Generation Conference
  • Scottsdale, Arizona, USA, June 24–26, 2002
  • Conference Sponsors: Power Division
  • ISBN: 0-7918-3617-7 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME


The objective of this study is to develop an evaluation tool for a design and performance of an extra heavy oil gasifier by a numerical simulation technique. The modelling and the numerical simulation for the extra heavy oil gasification on the 2.4 tons/day entrained flow gasifier of CRIEPI are described in this paper. The gas phase properties are calculated by three dimensional time-mean Eulerian conservation equations, in addition to the k-ε turbulence model. The fuel droplet behavior is modelled via a Lagrangian particle tracking approach. Four reaction processes are modelled in the present paper: atomization (micro-explosion), pyrolysis, coke gasification reaction, and gaseous phase reaction. As a result of the simulation, in a relationship between an oxygen ratio of the gasifier and the gasifier performance, such as heating value of the product gas, carbon conversion efficiency are presented. Distribution of gas temperature and gas composition in the gasifier, and the product gas composition are also presented. Comparison between the computational and the experimental results shows that the most features of the gasifier performance have been captured accurately by the computational procedure. The numerical simulation approach is very useful for the assessment of gasification performance, operation support and optimization of the gasifier design.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In