0

Full Content is available to subscribers

Subscribe/Learn More  >

Evaluation of Rheological Properties of Magnetorheological Polishing Fluid and Their Effect on Surface Finish in Ultra Precision Finishing Processes

[+] Author Affiliations
Sunil Jha, V. K. Jain

Indian Institute of Technology – Kanpur, Kanpur, India

Paper No. WTC2005-64260, pp. 843-844; 2 pages
doi:10.1115/WTC2005-64260
From:
  • World Tribology Congress III
  • World Tribology Congress III, Volume 1
  • Washington, D.C., USA, September 12–16, 2005
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4201-0 | eISBN: 0-7918-3767-X
  • Copyright © 2005 by ASME

abstract

Magnetorheological finishing (MRF) process for automated lens finishing and Magnetorheological abrasive flow finishing (MRAFF) for internal geometries rely on unique smart behavior of MRP-fluid. The rheological properties of MRP-fluid depend on carbonyl iron particle (CIP) and silicon carbide (SiC) particle size, their volume concentration, magnetic properties and applied magnetic field strength. To study the effect of particle size on rheological properties of MRP-fluid, a hydraulically driven specially designed capillary rheometer is fabricated. The best surface finish improvement was obtained with MRP-fluid containing approximately equal diameter of abrasive particles and CIPs. Least improvement was noticed with smaller CIPs and bigger abrasive combinations used. This is because the smaller size CIPs are incapable of providing the necessary finishing forces for bigger abrasive particles, which results in weak bonding strength.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In