0

Full Content is available to subscribers

Subscribe/Learn More  >

Study and Design of Heat Recovery Steam Generators

[+] Author Affiliations
S. Vedanth

Hindustan College of Engineering, Chennai, India

Paper No. IJPGC2002-26017, pp. 433-440; 8 pages
doi:10.1115/IJPGC2002-26017
From:
  • 2002 International Joint Power Generation Conference
  • 2002 International Joint Power Generation Conference
  • Scottsdale, Arizona, USA, June 24–26, 2002
  • Conference Sponsors: Power Division
  • ISBN: 0-7918-3617-7 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME

abstract

In the modern scenario of energy systems, we see that the efficiency of the modern day power plants attain a maximum possible limit of 40%–50% in most cases. This is a result of the wastage’s that are prevalent in the systems in the form of heat loss, friction losses due to flow in pipes and flow in other units. The modern day power plants employ the Heat Recovery Steam Generators ( HRSG) which help in converting the waste heat coming out of the turbine into useful work, thus increasing the overall efficiency of the plant. The application of Gas turbine generator (GT) based co-Generation power plants as a part of the industrial plants is on the rise. These plants are required to meet the industrial plants power and steam demand with variations associated with it. This paper deals with the study of a versatile industrial HRSG with specifications in order to support the design. The study and design is based on the design and production unit “Babcock Borsig power systems”, Chennai, India. The paper focuses on the Heat recovery Steam Generator design inclusive of selecting the parameters like pressure of steam, velocity of fluids at different stages with respect to the conditions, material selection etc. The design of HRSG involves primary inputs such as the Engineering Flow diagrams, Arrangement of Equipment’s at proper elevation and Engineering data (Specifications). The considerations of line sizing with respect to pressure drop, Net positive Suction Head, Pipe line erosion, Water Hammer and noise are taken into account. A well-specified and designed HRSG can substantially help the Industrial Co-Generation plant to meet the demand variation and imbalances without sacrificing the reliability of operation. The study is an important contribution to the exponentially rising population and hence the energy demands in the world.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In