0

Full Content is available to subscribers

Subscribe/Learn More  >

Fuel Consumption Index for Proper Monitoring of Power Plants: Revisited

[+] Author Affiliations
Fred D. Lang

Exergetic Systems, Inc., San Rafael, CA

Paper No. IJPGC2002-26097, pp. 313-324; 12 pages
doi:10.1115/IJPGC2002-26097
From:
  • 2002 International Joint Power Generation Conference
  • 2002 International Joint Power Generation Conference
  • Scottsdale, Arizona, USA, June 24–26, 2002
  • Conference Sponsors: Power Division
  • ISBN: 0-7918-3617-7 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME

abstract

This paper presents an method for heat rate monitoring of power plants which employs a true “systems approach”. As an ultimate monitoring parameter, derived from Second Law concepts, it quantifies system losses in terms of fuel consumption by individual components and processes. If electricity is to be produced with the least un-productive fuel consumption, then thermodynamic losses must be understood and minimized. Such understanding cuts across vendor curves, plant design, fuels, Controllable Parameters, etc. This paper demonstrates that thermal losses in a nuclear unit and a trash burner are comparable at a prime facia level. The Second Law offers the only foundation for the study of such losses, and affords the bases for a true and ultimate indicator of system performance. From such foundations, a Fuel Consumption Index (FCI) was developed to indicate specifically what components or processes are thermodynamically responsible for fuel consumption. FCIs tell the performance engineer why fuel is being consumed, quantifying that a portion of fuel which must be consumed to overcome frictional dissipation in the turbine cycle (FCITCycle ), the combustion process (FCIComb ), and so forth; and, indeed, how much fuel is required for the direct generation of electricity (FCIPower ). FCIs have been particularly applicable for monitoring power plants using the Input/Loss Method. FCIs, Δheat rates based on FCIs, and an “applicability indicator” for justifying the use of Reference Bogey Data are all defined. This paper also presents the concept of “dynamic heat rate”, based on FCIs, as a parameter by which the power plant operator can gain immediate feedback as to which direction his actions are thermally headed: towards a lower or higher heat rate.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In