Full Content is available to subscribers

Subscribe/Learn More  >

Cost Optimization for Steam Turbine Control Upgrades

[+] Author Affiliations
Gerhard J. Weiss

Alstom Power, Baden, Switzerland

Jerry A. Kopczynski

Alstom Power, Midlothian, VA

Paper No. IJPGC2002-26094, pp. 307-312; 6 pages
  • 2002 International Joint Power Generation Conference
  • 2002 International Joint Power Generation Conference
  • Scottsdale, Arizona, USA, June 24–26, 2002
  • Conference Sponsors: Power Division
  • ISBN: 0-7918-3617-7 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME


The basic principles of generating electricity from steam have not changed during the last 100 years. Consequently, current steam turbine design is similar to the one introduced to the market by BBC, ALSTOM, ASEA or GE about a century ago. Of course modern blade and valve design dramatically improves heat rate; new materials increase effective longevity of the turbine. Similarly, the basic principles of how to control a turbine are the same as many years ago. However, equipment being used now to operate and control a turbine is quite different than that of the time when the first steam turbine was put into commercial operation. It is common knowledge that the control system is technically aging much faster than the turbine itself. Steam turbines achieve an average service life of 40 years. There are many steam turbines still operating with originally installed control systems. These aging control systems installed 20–30 years ago are becoming unreliable and costly to maintain. For most power plant owners/operators it has become a necessity to modernize their originally installed mechanical/hydraulic control systems. This is particulary important now, due to the very competitive, deregulated power production business. Control system upgrades together with improvement of the steam path components will result in efficient operation of the power plant for an extended number of years for a fraction of the cost necessary to build a new power generation station. Several control upgrade solutions and options are available at substantial cost saving, without compromising safety requirements, flexibility and reliability of the power plant. Step by step modular upgrades, utilizing the majority of pre-existing equipment, using proven standard software modules and inexpensive PLCs (programmable logic controllers), applying 2 out-of-three 3 analog signal acquisitions for 2 out of 3, or 1 out of 2 protection — these are some ways of reducing the cost of plant modernization. This paper will discuss and document particular cases where the cost optimization concept was successfully implemented with positive results in the following areas: • High availability and reliability achieved; • Safety and flexibility of operation improved; • Maintenance cost reduced.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In