Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of Acoustic Wave Propagation HAMR Media

[+] Author Affiliations
Wei Peng, Yiao-Tee Hsia, Julius Hohlfeld

Seagate Technology, Pittsburgh, PA

Paper No. WTC2005-63913, pp. 757-758; 2 pages
  • World Tribology Congress III
  • World Tribology Congress III, Volume 1
  • Washington, D.C., USA, September 12–16, 2005
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4201-0 | eISBN: 0-7918-3767-X
  • Copyright © 2005 by ASME


In multi-layered solids, an acoustic wave is partially reflected and partially transmitted at boundaries, which renders a too complex wave pattern to be predicted with analytical models. A Finite Element Method (FEM) based numerical model is developed to predict the acoustic wave propagation in multi-layered solids, where an ANSYS acoustic fluid element is adopted to solve this problem. The model is applied to study the pump-probe transient reflectivity measurements on Heat Assisted Magnetic Recording (HAMR) media, where the thermo-elastic waves are isolated and then subtracted from the composite reflectivity change measurement. As a result, the reflectivity change caused by the thermal decay is separated from the thermo-elastic waves, allowing a more accurate prediction and measurement of the thermal properties of HAMR media.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In