Full Content is available to subscribers

Subscribe/Learn More  >

A Model for Analyzing Multi-Asperity Contact of Thin Sheets With Real Surfaces on Both Sides

[+] Author Affiliations
John J. Jagodnik, Sinan Müftü

Northeastern University, Boston, MA

Paper No. WTC2005-63862, pp. 751-752; 2 pages
  • World Tribology Congress III
  • World Tribology Congress III, Volume 1
  • Washington, D.C., USA, September 12–16, 2005
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4201-0 | eISBN: 0-7918-3767-X
  • Copyright © 2005 by ASME


A model for two-sided contact of a thin sheet of material, with real surfaces on both sides is presented. The model combines cylindrical-contact equations, with Euler-Bernoulli beam theory to examine the importance of substrate rigidity in two-sided contact problems. A finite difference program for solving this model is developed. Results for two-sided contact of numerically generated surfaces on thin tapes are presented. The effects of tape thickness and tension are explored. It is shown that substrate’s bending rigidity contributes significantly to the overall equilibrium, for typical tape thicknesses and tension values used by the industry. However, large thickness values exists for which substrate bending is negligible and elastic half-space solutions applied to both sides of the tape are adequate.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In