Full Content is available to subscribers

Subscribe/Learn More  >

Meniscus Adhesion at Ultra-Low Flying Slider-Disk Interfaces

[+] Author Affiliations
C. Mathew Mate, Robert N. Payne, Peter Baumgart, Kathy Kuboi

Hitachi Global Storage Technologies, San Jose, CA

Paper No. WTC2005-63180, pp. 683-684; 2 pages
  • World Tribology Congress III
  • World Tribology Congress III, Volume 1
  • Washington, D.C., USA, September 12–16, 2005
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4201-0 | eISBN: 0-7918-3767-X
  • Copyright © 2005 by ASME


As head-disk spacings in disk drives approach a few nanometers, adhesive forces between the slider and disk can drastically alter the slider flying dynamics. At these small separations, it is still unclear, however, what type of adhesive force dominates. Most previous studies have concentrated on van der Waals and electrostatic attractive forces [1], which are readily incorporated into air bearing simulations. In this talk, we provide experimental evidence that the dominant adhesive force originates from menisci forming around the low flying portions of the slider air-bearing-surface as the spacing transitions from near-contact to contact.

Copyright © 2005 by ASME
Topics: Disks



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In