Full Content is available to subscribers

Subscribe/Learn More  >

Improving Natural Draft Cooling Tower Performance With Heat Injection

[+] Author Affiliations
Eugene Grindle, Roger Lawson

Entergy, Newark, AR

John Cooper

John Cooper & Associates

Paper No. IJPGC2002-26028, pp. 9-14; 6 pages
  • 2002 International Joint Power Generation Conference
  • 2002 International Joint Power Generation Conference
  • Scottsdale, Arizona, USA, June 24–26, 2002
  • Conference Sponsors: Power Division
  • ISBN: 0-7918-3617-7 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME


This paper presents an assessment of heat injection as a means of improving natural draft cooling tower performance. The concept involves injecting heat into the cooling tower exit air/vapor stream immediately above the drift eliminators in order to increase the difference between the density of the exit air/vapor stream and the ambient air. The density difference between the air/vapor in the cooling tower stack and the ambient air is the engine that drives airflow through the cooling tower. The enhancement of the airflow through the cooling tower (the natural draft) results in more evaporation and thus lowers the circulating water temperature. Because the heat is injected above the drift eliminators, it does not heat the circulating water. To evaluate the cooling tower performance improvement as a function of heat injection rate, a thermal/aerodynamic computer model of Entergy’s White Bluff 1 & 2 and Independence 1 & 2 (approximately 840 MW each) natural draft cooling towers was developed. The computer model demonstrated that very substantial reductions in cold water temperature (up to 7°F) are obtainable by the injection of heat. This paper also discusses a number of possible heat sources. Sources of heat covered include extraction steam, auxiliary steam, boiler blow-down, and waste heat from a combustion turbine. The latter source of heat would create a combined cycle unit with the combination taking place in the condensing part of the cycle (bottom of the cycle) instead of the steam portion of the cycle (top of the cycle).

Copyright © 2002 by ASME
Topics: Heat , Cooling towers



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In