0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of Modern Electronic Control Systems for Power Distribution

[+] Author Affiliations
Brian D. Gaffney

Governor Control Systems, Inc., Fort Lauderdale, FL

Paper No. IJPGC2002-26004, pp. 1-7; 7 pages
doi:10.1115/IJPGC2002-26004
From:
  • 2002 International Joint Power Generation Conference
  • 2002 International Joint Power Generation Conference
  • Scottsdale, Arizona, USA, June 24–26, 2002
  • Conference Sponsors: Power Division
  • ISBN: 0-7918-3617-7 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME

abstract

The power industry is increasingly affected by several trends, which require improvements in the distributed generation and control systems of on-site power. These trends include the ability to share load across generators more effectively, seamless sequencing of generators, and the ability to monitor and control power that is being produced. Electronic control systems can provide these advantages in a cost effective solution. The application of electronic controls to a power distribution system requires a thorough development program. It is imperative to assure that the controls will provide reliable, long-term performance, as well as meeting the plant’s current and future needs for power distribution. This paper describes the development and field evaluation required to apply electronic controls to existing switchgear and power distribution systems in the power generation industry. The microprocessor based electronic control system for today’s power plants replaces out-dated analog equipment and antiquated relay logic. The new systems incorporate three main functions: Paralleling generators, monitoring power requirements, and effective sequencing of generators in power plants. Integration of these functions into the microprocessor based control system provides increased reliability, reduced cost, and enhanced performance, while concurrently providing increased flexibility in the operation of the plant. Additional benefits can be realized including reduced operator requirements, reduced training costs, and reduced burden on instrumentation electricians. A primary focus of this paper is the process used to qualify the control system needed for specific types of existing distributed power systems. This process consists of current system evaluation and categorization, establishment of classification of plant (utility, merchant plant, peak shaving facility, IPP), and determining the future needs of individual plants for power distribution. Local regulatory and utility protection and interconnect requirements must also be assessed to assure that the new control system meets or exceeds them. Methods of accurately monitoring, improving performance, and providing generator sequencing are defined, including accounting for improvements in the long-term expansion of the distributed power control and monitoring system.

Copyright © 2002 by ASME
Topics: Control systems

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In