0

Full Content is available to subscribers

Subscribe/Learn More  >

Neat Ionic Liquids and Additives in Lubrication of Steel-Aluminum

[+] Author Affiliations
A. E. Jimenez, M. D. Bermudez, P. Iglesias, F. J. Carrion, G. Martinez-Nicolas

Universidad Politécnica de Cartagena, Cartagena, Spain

Paper No. WTC2005-63120, pp. 605-606; 2 pages
doi:10.1115/WTC2005-63120
From:
  • World Tribology Congress III
  • World Tribology Congress III, Volume 1
  • Washington, D.C., USA, September 12–16, 2005
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4201-0 | eISBN: 0-7918-3767-X
  • Copyright © 2005 by ASME

abstract

A series of seven room-temperature ionic liquids (IL) have been studied as neat and 1 wt% base oil additives in the lubrication of steel and aluminum contacts under increasing sliding speed, normal load and temperature. IL used as neat lubricants can produce, depending on the composition, tribochemical processes at the aluminum-steel interface associated with an increase in friction coefficients and wear rates. When IL are used as 1 wt% additives, surfaces interactions can give friction and wear values lower than those obtained for the neat IL. The lubricating performance of the additives is more dependent on contact conditions than on composition.

Copyright © 2005 by ASME
Topics: Lubrication , Aluminum , Steel

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In