0

Full Content is available to subscribers

Subscribe/Learn More  >

Soft EHL Lubrication of Complex Multiphase Fluids

[+] Author Affiliations
J. de Vicente, J. R. Stokes

Unilever R&D, Sharnbrook, UK

H. A. Spikes

Imperial College London, London, UK

Paper No. WTC2005-64272, pp. 589-590; 2 pages
doi:10.1115/WTC2005-64272
From:
  • World Tribology Congress III
  • World Tribology Congress III, Volume 1
  • Washington, D.C., USA, September 12–16, 2005
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4201-0 | eISBN: 0-7918-3767-X
  • Copyright © 2005 by ASME

abstract

The lubrication properties of a series of multiphase water-based fluids of complex rheology and microstructure, including o/w emulsions, have been studied in a rolling-sliding steel ball-on-elastomer flat contact. The results show that friction curves of Newtonian fluids made over a wide range of entrainment speeds and viscosity can be used to identify the prevailing mechanisms of lubrication for more complex fluids and, for emulsions, to show the predominant film-forming phase.

Copyright © 2005 by ASME
Topics: Lubrication , Fluids

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In