0

Full Content is available to subscribers

Subscribe/Learn More  >

A Cavitation Algorithm for Arbitrary Lubricant Compressibility

[+] Author Affiliations
Fredrik Sahlin, Andreas Almqvist, Sergei Glavatskih, Roland Larsson

Luleå University of Technology, Luleå, Sweden

Paper No. WTC2005-63940, pp. 541-542; 2 pages
doi:10.1115/WTC2005-63940
From:
  • World Tribology Congress III
  • World Tribology Congress III, Volume 1
  • Washington, D.C., USA, September 12–16, 2005
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4201-0 | eISBN: 0-7918-3767-X
  • Copyright © 2005 by ASME

abstract

A general cavitation algorithm is presented that accommodates for an arbitrary density-pressure relation. Here it is possible to model the compressibility of the lubricant in such way the density-pressure relation is realistic from sub-cavity to high pressure regions respectively. The algorithm preserves mass continuity which is of importance when inter-asperity cavitation of rough surfaces is considered. Results with this algorithm for different density-pressure relations are presented and discussed.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In