Full Content is available to subscribers

Subscribe/Learn More  >

Models of Friction and Wear of DLC Films

[+] Author Affiliations
Feodor M. Borodich

Cardiff University, Cardiff, UK

Chad S. Korach

State University of New York at Stony Brook, Stony Brook, NY

Leon M. Keer

Northwestern University, Evanston, IL

Paper No. WTC2005-64085, pp. 403-404; 2 pages
  • World Tribology Congress III
  • World Tribology Congress III, Volume 1
  • Washington, D.C., USA, September 12–16, 2005
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4201-0 | eISBN: 0-7918-3767-X
  • Copyright © 2005 by ASME


Wear and friction of DLC (diamond-like carbon) covered counterparts are under consideration. Experiments showed that abrasion is the leading wear mechanism at the beginning of the wear process. However, the ability of the surface to wear away the counterpart reduces very rapidly, often as a power law function of the cycle numbers. This phenomenon was explained assuming that the initial abrasiveness of a coating is determined by the number of the nano-sharp asperities that were in contact with the counterpart, i.e. by the number of the sharp asperities within the nominal region of contact. On this basis, a model of abrasive wear was developed, using the concept of statistical self-similarity of distribution of the nano-sharp asperities within the current contact region. After the sharp asperities were blunted or removed from the contact region, the wear is related either to phase transformations or to chemical mechanisms. Recent experimental studies of dry sliding between two hydrogenated DLC coated counterparts in low oxygen environment showed that adsorbates have considerable influence on friction and the friction coefficient increases with the increasing of the time interval between contacts. The observed friction phenomena are assumed caused by a reaction between the adsorbate and carbon atoms of the coatings, and when the slider passes a point on the track, it removes mechanically some adsorbate from the surface. The mechanical action leads to re-exposure of the surface to gases in the environment. We assume that there is a transient short-life high temperature field at the vicinities of contacting protuberances that may cause various transformations of the surface. We suppose that first an adsorbate molecule becomes physically adsorbed to the surface and then chemisorbtion may occur between the carbon atoms of the coating and the ‘sticky’ oxygen atoms. The atoms or molecules of adsorbate interact with the conterpart. Our modeling established a direct connection between this kind of molecular friction and gradual wear. Using the new adsorption-desorption model, the numerical analyses of the friction coefficient were compared with experimental DLC friction results.

Copyright © 2005 by ASME
Topics: Friction , Wear



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In