0

Full Content is available to subscribers

Subscribe/Learn More  >

Contact Analysis of Multilayered Elastic/Plastic Solids With Rough Surfaces for Decreasing Friction and Wear

[+] Author Affiliations
Shaobiao Cai, Bharat Bhushan

Ohio State University, Columbus, OH

Paper No. WTC2005-63942, pp. 377-378; 2 pages
doi:10.1115/WTC2005-63942
From:
  • World Tribology Congress III
  • World Tribology Congress III, Volume 1
  • Washington, D.C., USA, September 12–16, 2005
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4201-0 | eISBN: 0-7918-3767-X
  • Copyright © 2005 by ASME

abstract

A numerical three-dimensional contact model is presented to investigate the contact behavior of multilayered elastic-perfectly plastic solids with rough surfaces. The surface displacement and contact pressure distributions are obtained based on the variational principle with fast Fourier transform (FFT)-based scheme. Von Mises yield criterion is used to determine the onset of yield. The effective hardness is modeled and plays role when the local displacement meet the maximum displacement criterion. Simulations are performed to obtain the contact pressures, fractional total contact area, fractional plastic contact area, and surface/subsurface stresses. These contact statistics are analyzed to study the effects of the layer-to-substrate ratios of stiffness and hardness, surface roughness, and layers thickness of rough, two-layered elastic/plastic solids. The results yield insight into the effects of stiffness and hardness of layers and substrates, surface roughness, and applied load on the contact performance. The layer parameters leading to low friction, stiction, and wear are investigated and identified.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In