Full Content is available to subscribers

Subscribe/Learn More  >

On the Evolution of Friction-Induced Nanostructures in Single Crystal Nickel

[+] Author Affiliations
S. V. Prasad, J. R. Michael, C. Battaile, P. G. Kotula

Sandia National Laboratories, Albuquerque, NM

B. S. Majumdar

New Mexico Tech, Socorro, NM

Paper No. WTC2005-63577, pp. 317-318; 2 pages
  • World Tribology Congress III
  • World Tribology Congress III, Volume 1
  • Washington, D.C., USA, September 12–16, 2005
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4201-0 | eISBN: 0-7918-3767-X
  • Copyright © 2005 by ASME


We have investigated the fundamental phenomena governing the friction-induced microstructures in single crystal nickel. Friction measurements were made using a unidirectional linear wear tester against a hard Si3 N4 ball so that deformation is confined to the softer Ni surface. To minimize the environmental effects on friction, we conducted the experiments in dry nitrogen atmosphere. A high precision rotary stage was designed and built to enable friction measurements to be made in specific crystallographic directions. Measurements were made on (100), (110) and (111) crystal faces. Focused ion beam (FIB) microscopy was used to prepare cross-sections of wear scars suitable for electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) analyses. The EBSD data revealed the formation of low-angle grain boundaries leading to the development of fine-grained equiaxed recrystallized substructues underneath the wear scars. The extent of subsurface deformation and the steady state friction coefficients were strongly dependent on the crystal orientation. At higher contact stresses, TEM analysis confirmed the formation of fine-grained equiaxed nanocrystalline grain structures. Subsequent friction tests on these nanostructured layers performed at much reduced contact stresses showed significant reductions in the friction coefficients. The role of the friction-induced nanostructures on the mechanisms of metallic friction is discussed.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In