Full Content is available to subscribers

Subscribe/Learn More  >

Numerical and Experimental Investigation of Friction in Cold Strip Rolling

[+] Author Affiliations
Cheng Lu, A. Kiet Tieu

University of Wollongong, Wollongong, Australia

Paper No. WTC2005-63394, pp. 265-266; 2 pages
  • World Tribology Congress III
  • World Tribology Congress III, Volume 1
  • Washington, D.C., USA, September 12–16, 2005
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4201-0 | eISBN: 0-7918-3767-X
  • Copyright © 2005 by ASME


To obtain a better understanding of friction and contact mechanism in cold strip rolling, a refined asperity ploughing model and an asperity elastic deformation model have been developed. It is found that the asperity angles α1 and α2 significantly affect the tangential force and the coefficient of friction respectively. The theoretical prediction is in good agreement with the experimental results in Ref. [7]. The developed models can predict a reasonable frictional coefficient if it is applied to the cold rolling process.

Copyright © 2005 by ASME
Topics: Friction , Strips



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In