Full Content is available to subscribers

Subscribe/Learn More  >

Failure Inception of a Spherical Contact Under Slip and Stick Conditions for Various Material Properties

[+] Author Affiliations
Victor Brizmer, Yuri Kligerman, Izhak Etsion

Technion – Israel Institute of Technology, Haifa, Israel

Paper No. WTC2005-63150, pp. 217-218; 2 pages
  • World Tribology Congress III
  • World Tribology Congress III, Volume 1
  • Washington, D.C., USA, September 12–16, 2005
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4201-0 | eISBN: 0-7918-3767-X
  • Copyright © 2005 by ASME


Failure inception of a deformable sphere loaded by a contacting rigid flat is analyzed separately for perfect slip and for full stick conditions and various material properties of the sphere. Ductile yielding and brittle failure inception of the sphere is identified by the critical interference and associated normal loading as well as the location of the first yield or failure occurrence. The analysis is based on the analytical Hertz solution for frictionless slip condition and on a numerical solution for stick condition. Failure inception is determined by using either the von Mises criterion of plastic yield or the maximum tensile stress criterion of brittle failure.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In